Future engines technologies

Gas-Only Internal Combustion Engines

H2020 GV-3-2014 Future natural gas powertrains and components for cars and vans

Massimo Ferrera (CRF)

The issue: vehicle emissions

Global impact

Main emissions	%weight	
CO ₂	18	
H ₂ O	8,5	
02	0,6	
N_2	72	

Local impact

Noxious emissions	%weight	
СО	0,6	
THC	0,1	
NOx	0,1	
Particle matter	0,1	
Not regulated		

Global impact: Green House Gases

Passenger car CO, emissions and fuel consumption, normalized to NEDC

Engine efficiency ~ 30%

VDE Vehicle demand energy

CO₂ is the main GHG. For a given fuel, the CO₂ quantity emitted depends on engine efficiency and vehicle characteristics (weight, rolling resistance, aerodynamics)

CO₂ reduction walk

<u>Electric Vehicles (BEV) and</u> <u>Plug-in Hybrids (PHEV)</u>

Electric vehicle offers CO₂-free emissions

Alternative Low Carbon Fuels

The lowest carbon content fuel, the lowest the CO₂ produced.

NG shows the best reduction

A pragmatic answer: methane (1/2)

CNG reserves greater than oil

Lowest fuel costs

Fossil CNG: up to 25% TtW CO2 reduction vs. gasoline with dedicated CNG cars

Bio-Methane: already available as 2^{nd} generation biofuel ($\sim 80\%$ less WtW CO_2)

Power to Gas Methane: ~ 95% less WtW CO₂

A pragmatic answer: methane (2/2)

Right fuel for internal combustion engines

Low emissions:

- No soot
- No NOx issue (also in RDE)

High knock resistant (RON > 120; Methane Number (MN) > 65...70)

- Ideal fuel for boosting and downsizing
- High compression ratio enabler for efficiency improvement and further CO2 reduction
- High boost pressure enabler (higher downsizing potential) for efficiency improvement by use of smaller engine architecture

GasOn targets to drastically reduce CO2 emissions (20%)

In order to exploit the main benefits of CNG (Compressed Natural Gas), the aim is to develop CNG-only (monofuel) engines able to comply with: post Euro 6 noxious emissions 2020+ CO₂ emissions targets new homologation cycle and real driving conditions with simultaneous improvement of engine efficiency & performance gasoline-like adopting: Innovative injection, ignition and boosting system concepts Advanced exhaust gas after treatment system Detecting gas-quality and composition

GasOn Consortium

GasOn Structure

GasOn timing

GasOn final outcomes

New generation of extremely efficient CNG engines

New generation of CNG injection system

New CNG combustion concepts

Fuel quality sensor

New storage layout complying with gasoline-like driving range

GasOn technologies & impacts

-20% CO2 tailpipe is feasible compared to current CNG solutions

Source Ford @ 39. Internationales Wiener Motorensymposium 2018:

Based on these steady state measurements vehicle cycle simulations have been conducted to verify conformance to NEDC and WLTC targets, based on a mid-class 7-seater van. The NEDC cycle prediction indicates a CO2 emission of 93 g/km, well below the initial target of 100 CO2 g/km. The prediction for the higher loaded WLTP cycle shows CO2 emissions of 120 g/km. The combination of these technologies leads to exceptionally low CO2 emissions which support the future emission glide path.

CNG DI (Direct Injection) concept

- Low pressure injection after intake valve closing (DI) to remove volumetric efficiency losses due to gaseous injection (PFI)
- Variable injection pressure system to comply with injection duration

Easy adaptation of CNG DI system into GDI engine

Cylinder Head & Block: >No modifications

Injection system CNG:

> DI CNG injectors, fuel rail and electronic pressure regulator

2014 CNG vehicle market: CNG port fuel injection (CNG PFI) only

Low specific torque: ~15% below comparable average gasoline DI

Low specific power: ~20% below comparable average gasoline DI

GasOn - New CNG combustion concepts

MOTIVATION

Monovalent CNG-Combustion to exploit fuel advantages and reach maximum efficiency

- Efficiency can be improved by using lean combustion for CNG with $\lambda > 1$
 - Target: λ=2
- Increased requirements for ignition system (mixture, pressure)
- Creating a suitable distribution of NG in the air locally and globally

Combustion Process

- Ignition chamber combustion increases lean limit
- Downscaling from big bore engines feasible
- Engine efficiency of 44% already shown
- Challenging aftertreatment system

GasOn – Fuel Quality Sensor

On-board sensor concept and module to detect the relevant gas quality parameters (eg. caloric value and composition)

- Integrated sensor module with multiple measurement principles
- 2 modules for optical and non optical measurements with the advantage of higher flexibility during development

Ultrasonic Sensor

Thermal Sensor

Optical sensor

GasOn - Storage

Existing underfloor lay-out

2 tanks = 86 liters = 300 km

GasOn project

Option	Capacity liters	Range (Km)	Tank lay out	Lay out modification
	163	580	N°1 tunnel (18L) + V°1 rear (68L) + N°1 rear Ø410x769 (77L)	Rear seat New 2 tanks
	154	545	N°1 tunnel (18L) + (68L) + (68L) + (68L)	Rear seat New 1 tank
	150	530	N°1 tunnel (18L) + N°1 rear Ø356x740 (55L) + N°1 rear Ø410x769 (77L)	Rear seat New 2 tanks
	141	500	N°1 tunnel (18L) + N°1 Ø210x690 (55L) + N°1 Ø410x769 (68L)	Rear seat New 1 tank
	124	440	N°1 tunnel (18L) + (19L x2) + (19L x2) + (68L)	New 2 tanks

2 times driving range vs current solutions

GasOn further support on Natural Gas arena

Support development of CNG Infrastructures

Validate new technologies as direct injection

Further research in ultralean CNG engines

Synergies with H2020 HDV project

You are invited to attend Final GasOn Workshop in Aachen on 24 October 2018

Thank you for your attention