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MOTIVATION
CO2 emission reductions in recent decades (NEDC*)  EU TtW CO2 

emissions reduced 
by ∼ 40% within the 
last 3 decades

 Safety and comfort 
enhanced

 CO, NOx, HC 
emissions reduced 
and performance 
increased

Ford Data (not content of FVV study)
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Escort Focus

Escort 1600i; 116 PS; 7,6 l/100 km = 179 g/km CO2
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Technology

Market demands

Legal Requirements

Focus 1.0 EcoBoost; 125 PS; 4,6 l/100 km = 109 g/km CO2

*NEDC:  New European Drive Cycle



MOTIVATION
CO2 reduction potential with gasoline/diesel (NEDC*)

*NEDC:  New European Drive Cycle

Typical C-Car: 
1360kg, 1.3 kWh 
for NEDC MHEV: Mild HEV

FHEV:   Full HEV 
BEV:    Battery Electric Vehicle
HEV:    Hybrid BEV

Ford Data (not content of FVV study)



MOTIVATION
CO2 reduction potential with gasoline/diesel (NEDC*)

*NEDC:  New European Drive Cycle

Typical C-Car: 
1360kg, 1.3 kWh 
for NEDC

∼40 %
2020 Fleet Target

2030 Fleet Target

Ford Data (not content of FVV study)

For comparison: 

marathon runner
(75 kg man, 4:15 finisher)
∼ 20 g CO2/km 
(additional to basal metabolic rate)

MHEV: Mild HEV
FHEV:   Full HEV 

BEV:    Battery Electric Vehicle
HEV:    Hybrid BEV



MOTIVATION
CO2 reduction potential with gasoline/diesel (NEDC*)

*NEDC:  New European Drive Cycle

 EU TtW CO2 targets (fleet):
 2020: 95 g/km
 2030: -37.5% (∼ 59 g/km, NEDC)

 Standard C-segment vehicle with max. 
technology content misses 2030 target 
when operated with gasoline / diesel fuels.
 Further TtW (!) CO2 reduction only possible 

via PHEV, BEV, FCEV
→ technological, economical limits !
 New Cycle “WLTP”** → increases CO2

 Customer demands for SUVs, larger cars and 
higher gasoline share intensify CO2 challenge
 Long-term (2050) EU/ German overall CO2 

reduction targets (80% / 95 %) impossible to 
achieve with fossil gasoline/diesel fuels.
 WtW option: complete defossilisation with 

e-fuels (PtX) based on renewable electricity 
(wind/solar).

Typical C-Car: 
1360kg, 1.3 kWh 
for NEDC

∼40 %

PHEV:  Plug-in HEV
MHEV: Mild HEV
FHEV:   Full HEV 

BEV:    Battery Electric Vehicle
FCEV:   Fuel Cell EV
HEV:    Hybrid BEV

** WLTP: Worldwide harmonized Light vehicles Test Procedure

2020 Fleet Target

2030 Fleet Target

Ford Data (not content of FVV study)



MOTIVATION

 How much powertrain and fuel 
diversification can we afford?

 What is the most efficient way to 
achieve those targets?

Discussed Future Fuels

Today 
(fossil)

Future 
(sustainable)

Overall 2050 Green-House-Gas (GHG) 
Reduction Targets 
• EU 80 %
• Germany 95 % 

→ Transport Sector needs nearly to 
reduce Well-to-Wheel (WtW) GHG 
emissions by 100%

e-fuelFCEVBEV ?

?



 Approach
 Assumptions
 Results

 Energy Demand
 Costs
 Market Introduction Potential (Assessment)

 Summary

CONTENT



Members of the FVV Working Group 

APPROACH “JOINT POSITION”:  WORKING GROUP OF WTT & TTW STAKEHOLDERS

Task: comparison of future scenarios, enabling 100% CO2 reduction for the road transport sector



APPROACH „FACTS & BASIC ASSUMPTIONS“ FOR 100 % CO2 REDUCTION

 Biofuels limited in quantity, therefore not suitable for 100% sustainable mobility
 100% sustainable mobility in 2050 possible with regenerative electricity (→ see FVV/LBST)
 Assumption: in 2050+ exclusively regenerative electricity – 100% wind and solar – available
 Remaining mobility concepts: battery electric vehicles (BEV), fuel cell electric vehicles (FCEV)

and (hybridized) vehicles with internal combustion engines operated exclusively with e-fuels (PtX)

e-fuel

FCEV

BEV



APPROACH: 100% SCENARIOS*
Fuel Powertrain Electrical Power Origin Energy Storage Energy Distribution

Electricity BEV 
(Benchmark) Permanent electrical power supply

Low cost scenario: Germany 2030
High cost scenario: Germany 2017

20% energy buffer (Pt-CH4) in 
electrical  power supply

Electrical power grid

E-H2 (compressed)
(local production)

FCEV Electrical power grid

E-H2 (compressed)
(central production)

FCEV

Intermittent electrical power supply, 

Low cost scenario: MENA 2030

High cost scenario: Germany 2017

Fuel storage in PtX-Production Local liquefaction (for CH4
and H2),

ship (MENA) 
+ truck (MENA/Germany)

E-Methan (compressed) SI engine (λ=1)
E-Methan
Compressed & kryogen (> 3.5t)

SI engine (λ=1)
CI HPDI (>3.5t)

E-Methanol (M100) SI engine (λ=1)
E-Gasoline FT SI engine (λ=1)
E-Propane / Butane (LPG) FT SI engine (λ=1)
E-Diesel FT CI Engine
E-OME CI Engine
E-DME CI Engine

*MENA = Middle East North Africa

*100% Scenarios → For each scenario all 45 Mio vehicles use the same powertrain / fuel.
(Even if not realistic, “100% scenarios” are considered as an effective tool for a simple technology comparison.)



 Approach
 Assumptions
 Results

 Energy Demand
 Mobility Costs
 CO2 Abatement Costs
 Investment Costs (Selected Scenarios)

 Parameter Variation
 CO2 Available
 Hybridization 
 cold-season Operation (Incl. Cabin Heating, Cold Start)

 Summary
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ASSUMPTIONS: ESTIMATION OF “FUTURE ENERGY DEMAND”
Calculation via „Wheel Energy Demand“. → Calculation basis: total fuel consumed in 2015

 Future LD fleet efficiency based on BIC (Best-in-Class) MY’17 C-Cars
 Future HD efficiencies assessed by expert group

Efficiency assumptions for existing fleet:
 LD Fleet Efficiency 23%
 HD Fleet Efficiency 35%



ASSUMPTIONS: EVALUATION MATRIX – INPUT DATA – INFRASTRUCTURE COSTS
Min Cost Scenario Max Cost Scenario 

Depreciation Investment 
Infrastructure

40 years, ROI 6 %, Interest Rate 4 %, Maintenance 5 %, Residual Value 0

Investment Infrastructure Number of Filling Stations (PtX, H2):
- LD:  5.000 Filling Stations 

(40.000 Extraction Points)
- HD:   6.000 Extraction Points

LD - BEV Charging Point:
- 80.000 Fast Charging Points   
- 12,5 Mio. Home Charging Points 
- 5 Mio. Charging Points at Work
HD Truck:  Trolley System 4.000 km

Assumption No extension of electrical power 
grid required

Grid connection  local H2 electrolysis: 
0 bil. € 

Number of Filling Stations (PtX, H2):
- LD: 10.000 Filling Stations 

(80.000 Extraction Points) 
- HD: 12.000 Extraction Points

LD - BEV Charging Point:
- 160.000 Fast Charging Points    
- 25 Mio. Home Charging Points 
- 10 Mio. Charging Points at Work
HD Truck:  Trolley System 13.000 km

Assumption extension costs electrical power 
grid: 77 bil. € + 21 bil. (trolley connection)

Grid connection  local H2 electrolysis: 
90 bil. € 



ASSUMPTIONS: EVALUATION MATRIX – INPUT DATA – VEHICLE COSTS  LD
Min Cost Scenario Max Cost Scenario 

LD* Vehicle Costs 
Basis: representative 
gasoline vehicle C-
segment: base price 
20.000 €, 
depreciation according to 
ADAC (15.000km/a, 4 
years): 300 €/month 

(Assumption: depreciation of 
on-costs direct proportional 
to depreciation of base 
price) 

Assumption for 2050: „Cost Parity** of BEV and 
FCEV to diesel vehicle“

• all SI concepts: no on-cost vs. gasoline vehicle
• all CI concepts +2.400 € vs. SI (→ 2018 price 

lists OEMs***).
• BEV500 und FCV: +2.400 € vs. SI

BEV500: +2.400  €
FCEV +2.400 €
DME +2.400  € 
Diesel/OME +2.400  € 
Methane +     0 €
Propane +     0 € 
Methanol +     0 € 

On-cost based on Roland Berger Auto-Oil 
Study (2030) + price lists OEMs + retro fitter 
price lists (assumption: OME as Diesel, DME as 
Diesel + LPG tanks)

BEV500****: +11.300 € (BEV400: + 9.500 €)
FCEV**** +12.500 €
DME*** ***** +3.400 € (Diesel + LPG tanks)
Diesel/OME*** +2.400 € 
Methane**** +1.800 €
Propane***** +1.500 € 
Methanol****** +  300 €

*LD (Light Duty) passenger cars and 
delivery trucks up to 3.5t 

** no technical basis, just a working group assumption
***  price list example: Opel Astra Edition: 1.4 Direct Injection

Turbo 92 kW (125 PS): 21.645 – 21.845 € vs. 1.6 Diesel 
81 kW (110 PS): 24.170 €

****   Roland Berger Study
***** Retrofit on-costs 
****** On-cost Flexi Fuel (E85) Ford Focus



ASSUMPTIONS: EVALUATION MATRIX – INPUT DATA – VEHICLE COSTS MD/HD
Min Cost Scenario* Max Cost Scenario*

MD/HD* Vehicle Costs 
Basis: 1 representative 
Trailer Truck as basis
vehicle:
Basis - Average „MAN TGS 
18.440 FLS LX, EURO6; 
Scania R 450 LA Highline, 
EURO6; Volvo FH 460 
Globetrotter, EURO6“:
90.400 €

Reduced Price for FCV and BEV*** 

EV (hybrid trolley truck): + 51.978 € 
FCV***: + 36.538 € 
DME/Propane**** +  1.000 € 
Diesel/OME/Gasoline +          0 €
Methane***** +14.000 € (λ 1)

+ 24.000 € (HDPI)

EV (hybrid trolley truck): +  87.500 € 
FCV: +124.740 € 
DME/Propane**** +  1.000 € 
Diesel/OME/Gasoline +          0 €
Methane***** + 14.000 € (λ 1)

+ 24.000 € (HDPI)

*MD/HD (Mid Duty & Heavy Duty)
trucks above 3.5t 

**Prices from „Lastauto & 
Omnibus Katalog 2017, S. 293 
ff (DEKRA)“

*** from: „Update DOE - Fuel Cell Technologies Office 
Kap. 3.3 + 3.4“

**** Tank system retrofit on-costs 
*****© 2014 FPInnovations



ASSUMPTIONS: EVALUATION MATRIX – INPUT DATA – FUEL PRODUCTION COSTS
Min Cost Scenario Max Cost Scenario 

PTX Production Location MENA (except of BEV and H2 local → DE) Germany
Efficiency Electrolysis 0,73 0,62

CO2 Source for PTX-Production Ambient air (approx. 125 € / t CO2) Ambient air (approx. 188 € / t CO2)

Electricity Price BEV and H2-local Permanently available (2030)
Germany: 100 € / MWh

Permanently available (2017)
Germany: 180  € / MWh

Electricity Prices PTX Processes Intermittent, MENA PV + Wind 2030 
24,26 €/MWh

Intermittent Off-Shore Wind 
North Sea 2017: 88,10 €/MWh

Depreciation Investment Fuel 
Production

20 years, ROI 6 %, Interest Rate 4 %, Maintenance 5 %, Residual Value 0

Electrolysis Full Load Hours 5.782 h/a 5.623 h/a
Storage size (duration) H2 
pressure tanks

FT, OME: 24 h
Methanol, DME: 12 h
H2-central: 6 h
Methane: 1 h

FT, OME: 24 h
Methanol, DME: 12 h
H2-central: 6 h
Methane: 1 h

PTX Full Load Hours FT, OME: 7.813 h/a
Methanol, DME: 7.149 h/a
H2-central: 5.839 h/a
Methane: 5.782 h/a

FT, OME: 5.758 h/a
Methanol, DME: 5.692 h/a
Methane, H2-central: 5.623 h/a
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RESULTS - ENERGY DEMAND – TANK-TO-WHEEL

 Reduction of TtW
energy demand by 
increased vehicle 
efficiency

 Combustion engine   
(w/o hybridization): 
76 – 85 % of 2015 ener-
gy demand (560 TWh)

 FCEV: 55 %
 BEV (HD: HO-BEV): 31%

Deviation of NEDC and real world 
efficiencies, e.g. heating demand of 
BEV, not accounted.

For comparison Germany (2015):
• Electrical power demand : 515 

TWh/a
• Total primary energy demand : 

3,632 TWh/a



RESULTS - PRIMARY ENERGY DEMAND

For comparison Germany (2015):
• Electrical power demand:         

521* TWh/a
• Total primary energy demand: 

3,632** TWh/a
*http://www.umweltbundesamt.de/daten/energiebereitstellung-verbrauch/energieverbrauch-nach-energietraegern-sektoren
**https://www.bmwi.de/Redaktion/DE/Infografiken/Energie/energie-primaerverbrauch.html

 Max. Energy: min. process efficiency, 
CO2 form air, production in Germany

 Min. Energy: max efficiencies, CO2
form air, PtX production in MENA 
(except BEV, H2-local)

Combustion Engine Range

 Lowest primary energy 
demand for BEV:             
7 - 9% Primary Energy 
DE 2015 (PE2015)
 E-H2 (Central) 14-16% PE2015

 E-CH4 (HPDI) 21-24% PE2015

 E-FT(50/50)   26-29% PE2015

20% PtX
buffer for 
permanent 
power 
supply



RESULTS - NUMBER OF WIND TURBINES 

 11.000 - 15.000 wind 
turbines* for 100% BEV

 28.000 - 32.000 wind 
turbines* for central H2

 35.000 - 40.000 wind 
turbines* E-CH4 (HDPI)

 43.000 - 49.000 wind 
turbines* for central FT*

** Average FT-Diesel, FT-Gasoline
* 5 MW offshore North Sea

Total number wind turbines DE 2016: 
27.270*
Usual wind turbine size 2017:
Onshore: 0,6 – 7,5 MW**
Offshore: 5    – 8    MW***

 Min. Number: max efficiencies, CO2
form air, production in Germany

 Max. Number: min. process efficiency, 
CO2 form air, production in Germany

*https://www.wind-energie.de/infocenter/statistiken/deutschland/windenergieanlagen-deutschland
**https://www.wind-energie.de/themen/onshore
***http://www.offshore-windindustrie.de/wea/offshore-wea-adwen

Min. and max. values for production in Germany.
(MENA scenario contains solar and wind power)

20% PtX
buffer for 
permanent 
power 
supply
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RESULTS – FUEL COSTS PER ENERGY UNIT

Scenario Constant 
DE

Intermittent
DE

Intermittent 
MENA

2017 180 88.1
2030 100 24.3

Electricity Costs [€/MWh]

 Lowest fuel cost for H2
from MENA: 0.08 €/kWh 

 DME and CH4 from 
MENA: 0.09 €/kWh 

 MENA H2, DME, CH4 and 
Methanol lower costs in 
€/kWh than buffered 
electricity for BEV in DE

 Max. Cost: min. process efficiency, 
CO2 form air, production in Germany
Min. Cost: max. process efficiency, 
CO2 form air, production in MENA 
(except of BEV, H2-local)

10 kWh ≅ 1l Diesel eq.

20% PtX
buffer for 
permanent 
power 
supply



RESULTS – FUEL COSTS PER 100 KM - LD

 Lowest “LD fuel costs” 
[€/100km] for BEV:        
1.99 … 4.68  €/100 km

 H2 Central: min. +    32 %
 Pt–CH4:  min. +  116 %
 Pt–FT:     min. +  211 %*
*average FT-gasoline / FT-diesel

 Max. Cost: min. process efficiency, 
CO2 form air, production in Germany

 Min. Cost: max. process efficiency, 
CO2 form air, production in MENA 
(except of BEV, H2-local)

Scenario Constant 
DE

Intermittent
DE

Intermittent 
MENA

2017 180 88.1
2030 100 24.3

Electricity Costs [€/MWh]

PtX ICE vehicles: no hybridizationAll-season operation 
(heating requirement) 
not included.

20% PtX
buffer for 
permanent 
power 
supply



RESULTS – INFRASTRUCTURE COSTS - LD

 Max. Cost PtX: 10k gas stations (80k 
LD refill points, 12k HD refill points) 

 Max. Cost H2 local: € 90 billion for 
connection of local electrolysis to 
power grid

 Max. Cost BEV (LD): 160k fast 
chargers, 25 Mio. home chargers, 10 
Mio chargers at work, grid extension 
costs (for home loading) € 77 billion

 Max. Cost HO-BEV (HD): 13k km 
overhrad line (€ 4 Million per km)

 Min. Cost PtX: 5k gas stations (40k LD 
refill points, 6k HD refill points) 

 Min. Cost H2 local: € 0 billion for 
connection of local electrolysis to 
power grid

 Min. Cost BEV (LD):   80k fast 
chargers, 12,5 Mio. home chargers, 5 
Mio chargers at work, NO grid 
extension costs (for home loading)

 Min. Cost HO-BEV (HD): 4 km 
overhead line (€ 4 Million per km)

Depreciation 40 years, ROI 6%, Interest Rate 4%, Service 5%, Residual Value: € 0

MEMO: Grid extension costs very controversially 
discussed  → Research Demand

 Lowest infrastructure 
costs for PtX fuels.



RESULTS – INFRASTRUCTURE + ENERGY COSTS - LD

 Max. Cost: min. process efficiency, 
CO2 form air, production in Germany
Max. Infrastructure Costs

 Min. Cost: max. process efficiency, 
CO2 form air, production in MENA 
(except of BEV, H2-local); Min. 
Infrastructure Costs

Scenario Constant 
DE

Intermittent
DE

Intermittent 
MENA

2017 180 88.1
2030 100 24.3

Electricity Costs [€/MWh]

BEV range

E-Methane range

20% PtX
buffer for 
permanent 
power 
supply



RESULTS – MOBILITY COSTS - LD

 LD mobility costs for 
PtX fuels are in the 
same ball park as BEV 
and FCEV

 Max. Cost: min. process efficiency, 
CO2 form air, production in Germany
(CO2 separation approx. 0.01€/kWh)

 Min. Cost: max. process efficiency, 
CO2 form air, production in MENA 
(except of BEV, H2-local)

 Cost Risk for BEV and 
FCEV higher than for 
E-Fuel pathways

Fossil Mobility Costs 2017
 Gasoline: 27.40 €/100km
 Diesel:  29.86 €/100km

20% PtX
buffer for 
permanent 
power 
supply

MEMO 
BEV 
range

MEMO
E-Methane range (Infrastructure + Fuel)

 LD vehicle costs 
dominate the mobility 
costs



RESULTS – MIN. MOBILITY COSTS - LD

 LD vehicle costs 
dominate the mobility 
costs

 MEMO: Vehicle costs 
very controversially 
discussed  →
Research Demand

LD Mobility Cost Brake 
Down 
(Min. Cost Scenario)

20% PtX buffer for 
permanent power supply



RESULTS – INVESTMENT COSTS
*Cumulated vehicle on-costs (LD vs. 
Gasoline; HD vs. Diesel) over 20 years: 
3.4 Mio. LD  pa & 50k HD pa

 Highest cost risk at 
automotive industry for  
BEV and FCEV.

 All pathways require 
significant upfront 
investment costs. 

 Investment patterns 
differ significantly.

Automotive Industry

Network Operator, Fuel DistributorFuel Industry

Utility Companies

20% 
PtX
Puffer 
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RESULTS – TOTAL INVESTMENT COSTS
Scenario Min. Investment 

Costs / bil. €
Max. Investment 
Risk / bil. €

E-CH4 270 800
E-MeOH 280 820
E-FT* 420 970
E-DME 420 960
E-OME 540 1.190
E-H2 
(central)

380 1.440

E-H2 
(local)

540 1.740

BEV 360 1.320
*Assumption FT:  ½ Gasoline  + ½ Diesel  Significant total investment costs for all pathways.

 Highest cost risk for FCEV.
 Best cost opportunities for E-Methane and E-Methanol.
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RESULTS – MARKET INTRODUCTION POTENTIAL – INFRASTRUCTURE

Success of market introduction will depend on compatibility with existing car park and existing legislation

 Appreciable infrastructure in Germany for 4 of the investigated fuels:
o FT-gasoline (14.000), FT-Diesel (14.000), FT-LPG (6.800), PtG-

Methane (900)
 Only 2 of the further investigated fuels are drop-in capable: 

o Methanol (up to 3 % into gasoline – EN 228)
o H2 (up to 2 % to CNG / Methane - EN16723-2)

Fuel Standards:
 Quick PtX fuel market introduction requires the availability of decent fuel 

standards
 Fuel standardization usually requires at least 5 years
 European or German fuels standards only available for: FT-gasoline (EN 

228), FT-diesel (EN 15940), FT-LPG (EN 589), PtG-Methane (EN16723-2, 
DIN 51624)
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 Even if not realistic, “100% scenarios” are an effective tool for a simple technology 
comparison

 100% sustainable mobility in 2050 possible with BEV, FCEV and PtX (-HEV)
 The vehicle costs dominate the mobility costs (not the PtX costs).  

 On-costs for BEV and FCEV have a significant impact, but are difficult to predict
 Electricity grid extension cost prediction is also very difficult, while those costs also 

have a significant impact on mobility costs
 All pathways require significant investment costs.

 E-fuels require significant investment costs for fuel production. 
 Long term investment is the key hurdle for e-fuel production.
 Appropriate legislative conditions for investment stimulation required, e.g. recognition 

of e-fuel CO2 benefit.
 Quick market introduction (< 5 years) is only possible with already standardized fuels 
 Only a very limited number of fuels appear beneficial for all mobility stakeholders

SUMMARY
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for your attention.

Questions?

FVV Working Group Future Fuels

Dr. Ulrich Kramer
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APPROACH - FUEL MATRIX CONTENT

Criteria compared in Fuel Matrix
Quantitatively:
 Energy demand (TtW, WtW, Primary)
 Mobility costs (fuel production, 

infrastructure, vehicle costs)

Qualitatively:
 Zero impact emission capability
 Safety & handling
 Market introduction potential

 Charging time
 Backwards compatibility
 Available infrastructure
 Technology readiness
 Availability of standards

Approach: cost assessment
Price for electrical power [€/MWh] 
based on full costing as input for 
mobility cost assessment. 
2 types of electrical power:
1. Intermittent (when possible)
2. Permanent (when required)

Mobility cost assessment 
[€/100 km]
• Fuel production (20 years 

depreciation)
• Infrastructure development 

(40 years depreciation)

Costs for “constant energy demand” (energy 
storage) covered in electricity price.

Electrolysis

• Vehicle costs (LDV loss in 
value according to ADAC)



PTX PROCESS
• PTX Process Assumptions

• Identical electrolysis efficiency assumed for each fuel 
• PTX process heat utilization taken into account (CO2 separation) 
• 2 scenarios (min. / max.):

• Min. Cost: max. process efficiency, CO2 form air, production in MENA*
• Max. Cost: min. process efficiency, CO2 form air, production in Germany * MENA: 

Middle East North Africa



RESULTS - WELL-TO-WHEEL EFFICIENCY LIGHT DUTY

 Best LD WtW efficiency 
for BEV: 0.58 – 0.75    
(20 % energy buffer not 
included!)

 H2 central efficiency: 
0.25 – 0.29 

 PtX efficiency: 
0.10…0.11  (OME) –
0.15….0.17 (CH4)

 Max. Efficiency: max EL efficiency, CO2
form air, BEV: slow charging 

 Min . Efficiency: min. EL efficiency, 
CO2 form air, BEV. fast (buffered) 
charging

WtW-PtX-Efficiencies include: 
electrolysis, PtX-synthesis, 
liquefaction, fuel transport in 
Germany, vehicle efficiency NEDC 
(w/o hybridization, w/o cabin heating 
BEV)

MEMO: 20% energy buffer –
required for BEV and H2-local 
scenario – NOT included in 
efficiency calculation



RESULTS - WELL-TO-WHEEL EFFICIENCY HEAVY DUTY

 Best HD WtW Efficiency 
for HO-BEV: 0.61 – 0.80 
(20 % energy buffer not 
included!)

 H2 central efficiency: 
0.25 – 0.28 

 PtX efficiency: 
0.14…0.15 (OME) –
0.21…0.24 (CH4 HPDI)

 Max. Efficiency: max EL efficiency, CO2
form air, BEV: slow charging 

 Min . Efficiency: min. EL efficiency, 
CO2 form air, BEV: fast (buffered) 
charging

WtW-PtX-Efficiencies include: 
electrolysis, PtX-synthesis, 
liquefaction, fuel transport in 
Germany, vehicle efficiency

MEMO: 20% energy buffer –
required for BEV and H2-local 
scenario – NOT included in 
efficiency calculation



RESULTS - PRINAMRY ENERGY DEMAND – CO2 AVAILABLE

20% PtX
buffer for 
constant 
power 
supply

For comparison Germany (2015):
• Electrical power demand:         

521* TWh/a
• Total primary energy demand: 

3,632** TWh/a
*http://www.umweltbundesamt.de/daten/energiebereitstellung-verbrauch/energieverbrauch-nach-energietraegern-sektoren
**https://www.bmwi.de/Redaktion/DE/Infografiken/Energie/energie-primaerverbrauch.html

 Max. Energy: min. process efficiency, 
CO2 available, production in Germany

 Min. Energy: max efficiencies, CO2
available, PtX production in MENA 
(except BEV, H2-local)

 Lowest WtW energy 
demand for BEV:             
< 9% Primary Energy DE 
2015 (PE2015)

 Pt-H2 (Central) < 16% PE2015

 Pt-CH4 < 20% PE2015

 Pt-FT < 24% PE2015

Combustion 
engine range

MEMO: Combustion engine range (CO2 from air)



RESULTS – MOBILITY COSTS - LD - CO2 AVAILABLE

20% PtX
buffer for 
constant 
power 
supply

 With CO2 from 
available sources, cost 
benefit of PtX
increases

 Max. Cost: min. process efficiency, 
CO2 available, production in Germany

 Min. Cost: max. process efficiency, 
CO2 available, production in MENA 
(except of BEV, H2-local)

BEV 
range

Min E-Fuel (E-Methane)

Max E-Fuel (E-OME)



RESULTS – MIN. MOBILITY COSTS - LD

20% PtX buffer for 
constant power supply

 LD vehicle costs 
dominate the mobility 
costs

LD Mobility Cost Brake 
Down 
(Min. Cost Scenario)



RESULTS – MOBILITY COSTS - HD
 HD mobility costs for 

PtX fuels are in the 
same ball park as HO-
BEV and FCEV

 Max. Cost: min. process efficiency, 
CO2 form air, production in Germany
(CO2 separation approx. 0.01€/kWh)

 Min. Cost: max. process efficiency, 
CO2 form air, production in MENA 
(except of BEV, H2-local)

MEMO: Energy (Fuel) + Infrastructure  Costs [€/100km]
BEV:  30.37– 70.11 (x 3  - 2)
FCV (local H2) 69.55 – 114.60 (x 2)

FCV (central H2) 20.04 – 53.04 (x 4 – 2)
CH4 19.46 – 86.59 (x 3 – 1.5)
FT Diesel 27.70 – 102,91 (x 3 – 1.5)

 Most cost efficient PtX
fuels:  DME, CH4, MeOH

Fossil Mobility Costs 2017
 Diesel:  62.15 €/100km

20% PtX
buffer for 
permanent 
power 
supply



RESULTS – COSTS – CO2 AVAILABLE

20% PtX
buffer for 
constant 
power 
supply

 With CO2 from available 
sources, cost benefit of PtX
increases

 Most cost efficient PtX fuels:
o DME
o CH4
o MeOH

 Max. Cost: min. process efficiency, 
CO2 available, production in 
Germany
(CO2 separation approx. 0.01€/kWh)

 Min. Cost: max. process efficiency, 
CO2 available, production in MENA 
(except of BEV, H2-local)

MEMO: Energy (Fuel) + Infrastructure  Costs [€/100km]
BEV:  30.37– 70.11 (x 3  - 2)
FCV (local H2) 69.55 – 114.60 (x 2)

FCV (central H2) 20.04 – 53.04 (x 4 – 2)
CH4 19.46 – 86.59 (x 3 – 1.5)
FT Diesel 27.70 – 102,91 (x 3 – 1.5)

Min E-Fuel
(E-DME)

Max E-Fuel
(E-OME)



RESULTS – COSTS
 All PtX fuels require 

significant upfront 
investment costs

 Invest costs to substitute 
German fuel demand are:
 70 bln € for H2 central
 160 bln € for PTG (CH4)
 220 bln € for FT

 FT and OME likely to 
require highest invest costs 
due to complex process / 
lower efficiency

 Numbers do not include 
investment costs for solar / 
wind farm and infrastructure 
cost

 Invest risk is key hurdle 
for PtX! 

Max. PtX-Synthesis investment costs in MENA incl. CO2 separation



RESULTS – COSTS
 All PtX fuels require 

significant upfront 
investment costs

 Invest costs to substitute 
German fuel demand are:
 70 bln € for H2 central
 100 bln € for PTG (CH4)
 170 bln € for FT

 FT and OME likely to 
require highest invest costs 
due to complex process / 
lower efficiency

 Numbers do not include 
investment costs for solar / 
wind farm and infrastructure 
cost

 Invest risk is key hurdle 
for PtX! 

Min. PtX-Synthesis investment costs in MENA (incl. CO2 separation)



RESULTS – MARKET INTRODUCTION POTENTIAL – CHARGING TIME

35 l/min filling station
~20.5 MW charging 
power

E-Diesel / E-Gasoline
< 10 sec / 100km

2-3 min for 20kg CH4
≤ 300 bar filling station
(30 – 40 kW compressor: parallel re-
fueling of 2 vehicles possible)
~6.5 MW charging power

E-Methane
~ 30 sec / 100km

3-5 min for 4-7kg H2
880 bar filling station, H2 
preconditioned to -40℃
~3 MW charging power

FCEV
~ 30 sec / 100km

2,3 kW (household)
50 kW – 120 kW 
(fast charging)

BEV
~ 6 hours to 
~ 6 min / 100km

Up to 350 kW planned 
(German consortium)

BEV (future)
~ 3 min / 100km

 Acceptable re-fill time (100 km in 
< 0.5 min) for all LD e-fuel 
scenarios and for FCEV. 
Similar for HD/MD.

 Today’s BEV re-charging time 
(100 km in min. 6 min) requires 
changes in customer behavior. 

 Customer acceptance for long 
distance travel questionable.

 Supplementary concepts 
required.



RESULTS – ZERO IMPACT EMISSIONS CAPABILITY ASSESSMENT

 Locally zero emissions only achievable with BEVs, FCEV and PHEV.
 *Zero-Impact-Emission-Mobility assessed to be achievable with all 

investigated combustion engine concepts.
 The research demand to achieve Zero-Impact-Emission-Mobility varies 

depending on the fuel  /powertrain combination.
 CI concepts require more research than stoic. SI concepts

* Exhaust gas emissions below accuracy limit of detection method; environmental impact below allowed 
immission limit according to BImSchG)
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