

# Effect of CNG-H<sub>2</sub> blends and turbulence on EGR tolerance in SI engine

Prashant Goel, Mirko Baratta, Daniela Misul

Politecnico Di Torino, Italy

- Objective
- Methodology
  - Simulation setup
  - Validation
  - Mesh Dependency
- Assessment of effect of EGR addition
- Assessment of effect of hydrogen addition
- Conclusion



- Objective
- Methodology
  - Simulation setup
  - Validation
  - Mesh Dependency
- Assessment of effect of EGR addition
- Assessment of effect of hydrogen addition
- Conclusion



- To study the effect of hydrogen addition with CNG on combustion
- To study the effect of EGR on combustion



- Objective
- Methodology
  - Simulation setup
  - Validation
  - Mesh Dependency
- Assessment of effect of EGR addition
- Assessment of effect of hydrogen addition
- Conclusion



#### Methodology



#### Simulation setup and Model validation



| Cylinder displacement                                                          | 342 cm <sup>3</sup>                                                         |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Bore / Stroke                                                                  | 72 mm / 84 mm                                                               |
| Compression Ratio<br>Valves per cylinder<br>Combustion chamber<br>Intake valve | 9.8:1<br>4<br>Pent-roof<br>Opening duration = 250CAD / maximum lift = 7.5mm |
| Exhaust valve                                                                  | Opening duration = 244 CAD / maximum lift = 7 mm                            |
| Injection system                                                               | Port Fuel injection                                                         |
| Turbocharger                                                                   | Wastegate-controlled, fixed geometry turbine                                |

| Numerical Setup     |                     |           |
|---------------------|---------------------|-----------|
| Flow                | Compressible        |           |
| Gas Simulation      | Redlich Kwong model |           |
| Numerical method    | Implicit method     |           |
| Turbulence model    | RNG k-e             |           |
| Combustion model    | ECFM                | Ar        |
| Heat transfer model | Angelberger         | FI)<br>SD |

| = | Base grid [mm]                       | 4*4*4                                   |  |
|---|--------------------------------------|-----------------------------------------|--|
|   | Cylinder Region                      |                                         |  |
|   | Fixed embedding                      | scale = 1                               |  |
|   | AMR - Velocity                       | sub-grid criterian = 1 m/s<br>Scale = 3 |  |
|   | AMR - Temperature                    | sub-grid criterian = 5 K<br>Scale = 3   |  |
| = | Fixed Embedding -<br>spark plug area | scale = 5                               |  |





#### Model validation

#### ENGINE 1



[1]. BARATTA, M., D' AMBROSIO, S., MISUL, D., & SPESSA, E. (2014). EFFECTS OF H<sub>2</sub> ADDITION TO COMPRESSED NATURAL GAS BLENDS ON CYCLE-TO-CYCLE AND CYLINDER-TO-CYLINDER COMBUSTION VARIATION IN A SPARK-IGNITION ENGINE. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER, 136(5), 051502. DOI:10.1115/1.4026163



#### Simulation setup and Model validation





| Engine          | 405 cm <sup>3</sup>                                |
|-----------------|----------------------------------------------------|
| displacement    |                                                    |
| Bore / Stroke   | 80 mm / 80.5 mm                                    |
| Compression     | 13.4:1                                             |
| ratio           |                                                    |
| Piston          | Central shallow bowl                               |
| Ignition system | Mercedes Coil (90 mJ) NGK spark plug (ILZKR8A)     |
| Intake valve    | Opening duration = 169 CAD / maximum lift = 8.5 mm |
|                 | IVO = -6 ATDC / IVC = -5 ABDC                      |
| Exhaust valve   | Opening duration = 200 CAD / maximum lift = 8.5 mm |
|                 | EVO = +38 BBDC / EVC = -18 BTDC                    |

| Numerical Setup     |                     |  |  |
|---------------------|---------------------|--|--|
| Flow                | Compressible        |  |  |
| Gas Simulation      | Redlich Kwong model |  |  |
| Numerical method    | Implicit method     |  |  |
| Turbulence model    | RNG k-e             |  |  |
| Combustion model    | ECFM                |  |  |
| Heat transfer model | Angelberger         |  |  |

|  | Base grid [mm] 4*4*4                 |                                         |  |
|--|--------------------------------------|-----------------------------------------|--|
|  | Cylinder Region                      |                                         |  |
|  | Fixed embedding                      | scale = 2                               |  |
|  | AMR - Velocity<br>AMR - Temperature  | sub-grid criterian = 1 m/s<br>Scale = 3 |  |
|  |                                      | sub-grid criterian = 2.5 K<br>Scale = 3 |  |
|  | Fixed Embedding -<br>spark plug area | scale = 5                               |  |



[2]. BARATTA, M., MISUL, D., GOEL, P., LAURENZANO, D. ET AL., "EXPERIMENTAL AND NUMERICAL ANALYSIS OF DILUTED COMBUSTION IN A DIRECT INJECTION CNG ENGINE FEATURING POST- EURO-VI FUEL CONSUMPTION TARGETS," SAE TECHNICAL PAPER 2018-01-1142, 2018, <u>HTTPS://DOI.ORG/10.4271/2018-01-1142</u>.





#### Model validation



[2]. BARATTA, M., MISUL, D., GOEL, P., LAURENZANO, D. ET AL., "EXPERIMENTAL AND NUMERICAL ANALYSIS OF DILUTED COMBUSTION IN A DIRECT INJECTION CNG ENGINE FEATURING POST- EURO-VI FUEL CONSUMPTION TARGETS," SAE TECHNICAL PAPER 2018-01-1142, 2018, HTTPS://DOI.ORG/10.4271/2018-01-1142.





# Mesh dependency





#### Mesh dependency







#### Mesh dependency



|          |                                           | Course                                  | Finer                                   | Finest                                  |
|----------|-------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|          | Base grid [mm]                            | 4*4*4                                   | 4*4*4                                   | 3*3*3                                   |
|          |                                           | Cylind                                  | er Region                               |                                         |
|          | Fixed embedding                           | scale = 1                               | scale = 2                               | scale = 3                               |
|          | AMR - Velocity                            | sub-grid criterian = 1 m/s<br>Scale = 3 | sub-grid criterian = 1 m/s<br>Scale = 3 | sub-grid criterian = 1 m/s<br>Scale = 3 |
|          | AMR - Temperature                         | sub-grid criterian = 5 K<br>Scale = 3   | sub-grid criterian = 2.5 K<br>Scale = 3 | sub-grid criterian = 2.5 K<br>Scale = 3 |
|          | Fixed Embedding -<br>spark plug area      | scale = 5                               | scale = 5                               | scale = 5                               |
| Co<br>(E | CoV_Peak pressure<br>(Experiment = 4.37%) | 0.86%                                   | 3.12%                                   | 3.85%                                   |
|          | Simulation Time                           | 18hrs/cycle on 22 cores                 | 32hrs/cycle on 22 cores                 | 42hrs/cycle on 22 cores                 |





- Objective
- Methodology
  - Simulation setup
  - Validation
  - Mesh Dependency
- Assessment of effect of EGR addition
- Assessment of effect of hydrogen addition
- Conclusion



### Definition of parameters used in Borghi plots





### Effect of EGR addition





- Objective
- Methodology
  - Simulation setup
  - Validation
  - Mesh Dependency
- Assessment of effect of EGR addition
- Assessment of effect of hydrogen addition
- Conclusion



## Effect of Hydrogen addition





#### Effect of Hydrogen addition on EGR Tolerance





- Objective
- Methodology
  - Simulation setup
  - Validation
  - Mesh Dependency
- Assessment of effect of hydrogen addition
- Assessment of effect of EGR addition
- Conclusion



#### Conclusion



Difference due to turbulent intensity:

 $\approx f(\frac{1}{Da}) = f(\frac{L_F}{L_i}\frac{u'}{S_L})$ 

where, Da = Damköhler number  $L_F$  = Laminar flame thickness [m]  $L_i$  = Turbulent length scale [m] u' = Turbulent intensity [m/s]  $S_L$  = laminar flame speed

#### Future Work

• To check this function's validity with EGR cases and different load points



#### Acknowledgment

#### Politecnico Team



Prof. Mirko Baratta

Prof. Daniela Misul



#### Prashant Goel

Silvestru Chiriches



Mattia Gamba



Antonio De Candia



team for their support



# Thank you!!!

