

Dedicated CNG / E-Methane Vehicles & Horizon 2020 "GasOn" WP3 Status

Dr. Ulrich Kramer
Ford-Werke GmbH, Cologne
R&A Powertrain Europe

JEC Meeting, Ford RIC Aachen, Dec. 20th 2017

State of the art: methane engine technology

2014 EU CNG vehicle market: CNG port fuel injection (PFI)

→ torque penalty vs. gasoline DI:
CNG displaces air → vol. effy. ↓

- Dedicated CNG DI engine: compensation of volumetric efficiency losses
- Enhanced downsizing by exploitation of high knock resistance of CH₄
 - \Rightarrow Increased efficiency of CNG engines \rightarrow less CO₂

CNG specific torque: ~15% below comparable gasoline DI

CNG specific power: ~ 20% below comparable gasoline DI

H2020 - Project: GasOn WP3 Target Setting

H2020 GV-3-2014 Future natural gas powertrains and components for cars and vans (Project number 652816)

CO2 reduction walk for Generic CNG Base Vehicle Grand C-MAX 1.6l Ecoboost CNG PFI

CNG base vehicle: Grand C-MAX 1.6l Ecoboost (gasoline)

	FC	CO2	FC/CO2	CO2 E	Benefit			
	kg/100km	g/km	gCO2 / kgCNG	Step	Total	Version	CO2 Impact	Performance Impact
Powertrain	(neat CH4)			%	%			
1.6l Ecoboost Gasoline DI	4.80	149	31.0			Gasoline Base	c/o	c/o
1.6l Ecoboost CNG PFI	4.21	113	27.5	24.0			more favorable C/H ratio of CNG vs.	Low end torque not achieved below 2000 rpm - not compensated: reduced performance vs. gasoline version
1.6l Ecoboost CNG PFI	4.45	122	27.5	-8.1		range CNG Type 1 tank	CO2 penalty because of on-weight of CNG tank system	Reduced performance because of on-weight of CNG tank system (not compensated)
1.6l Ecoboost CNG PFI	4.53	124	27.5	-1.7		Short final drive applied to compensate weight penalty of CNG tanks: Base CNG		Performance loss of additional tank system weight compensated (CNG PFI penalty not compensated)

Grand C-MAX 1.6l Ecoboost CNG PFI

• CO2: 124 g/km

H2020 – Project: GasOn WP3 Targets

H2020 GV-3-2014 Future natural gas powertrains and components for cars and vans (Project number 652816)

BIC 2015 C-Class Vans (7 seats) – CO2 Emissions

Generic Base Vehicle: Ford Grand C-MAX CNG PFI - BIC Competitor Comparison

Vehicle Data	Generic Ford Grand C-MAX 1.6l Ecoboost CNG PFI	VW Touran 1.4l TSI Ecofuel	Opel Zafira Tourer 1.6 CNG Turbo ecoFLEX	Last Ford C-MAX 2.0l CNG (MY 2005 2009)
CO2 / g/km	124	128	129	148
0 – 100 km/h / s	~ 10.5	10,2	11,5	10,9
Seats / -	7	7	7	5
Weight / kg	1729	1697	1735	1496
Power / kW	110	110	110	93
Torque / Nm	220 240	220	210	156
At lowest rpm	~ 2000	1500	2300	4500
Mileage / km	600	500	530	250

H2020 - Project: GasOn - Technology

H2020 GV-3-2014 Future natural gas powertrains and components for cars and vans (Project number 652816)

GasOn – Gas-Only Internal Combustion Engines (WP3)

GasOn Technologies

Downsizing:

 1.0l 3 Cylinder dedicated NG Engine

CNG Type 4 Tanks

Variable Compression Ratio (VCR)

Part Load De-throttling

Continuously Variable Valve Lift System (CVVL)

H2020 – Project: GasOn WP3 Target Setting

H2020 GV-3-2014 Future natural gas powertrains and components for cars and vans (Project number 652816)

CO2 reduction walk for Dedicated CNG GasOn Vehicle Grand C-MAX 1.6l Ecoboost CNG DI

Generic base vehicle: Grand C-MAX 1.6l CNG PFI

	FC	CO2	FC/CO2	CO2 Benefit				
	kg/100km	g/km	gCO2 / kgCNG	Step	Total	Version	CO2 Impact	Performance Impact
Powertrain	(neat CH4)			%	%			
1.6l Ecoboost CNG PFI	4.53	124	27.5			BASE CNG	-	-
1.0 Adv. Twin Boost CNG DI (c/o CR; c/o valvetrain int.)	4.00	110	27.5	11.5		Replace 1.6l Ecoboost CNG PFI engine with 1.0l Ecoboost CNG DI engine	CO2 benefit because of downsizing (dethrotteling, friction reduction)	None: Compensated by advanced boosting system and CNG-DI
1.0 Adv. Twin Boost CNG DI (c/o CR; c/o valvetrain int.)	3.75	106	27.5	3.5		Type 1 CNG tanks replaced by Type 4, gasoline tank removed, + weight impact of 3 cyl. vs. 4 cyl. engine	CO2 benefit because of weight reduction	Improved with less vehicle weight
1.0 Adv. Twin Boost CNG DI (c/o CR; c/o valvetrain int.)	3.70	105	27.5	1.4		Long final drive applied (affordable because of weight reduction)	CO2 benefit because of down-speeding	Performance gain of weight reduction compensated
1.0 Adv. Twin Boost CNG DI (VCR & VVL)	3.51	100	27.5	4.9	20	High CR and Intake VVL applied	CO2 benefit because of higher combustion efficiency (high CR) and de-throtteling (VVL)	Slightly improved performance expected

Grand C-MAX 1.6I Ecoboost CNG DI GasOn

• CO2: 100 g/km

H2020 – Project: GasOn – 1st Achievements

H2020 GV-3-2014 Future natural gas powerτrains and components for cars and vans (Project number 652816)

GasOn – Gas-Only Internal Combustion Engines (WP3)

- Ford Grand C-MAX (7 Seat Van) built
- Dedicated "Gas Only" powertrain, engine optimized for methane operation (Non-VCR version with high combustion pressure capable engine architecture)
- > 600 km mileage
- ≥ 20% CO₂ reduction vs. "Best-in-Class" CNG Vehicle 2014 (CO₂ eq. ≤ 100 g/km)
- 110 kW, 240 Nm
- EU6+ emission level

Prospects of CNG / e-methane as fuel

Picture: erdgas mobil / Danny Kurz Photography

- Fossil CNG: 25 %
 TTW CO₂ reduction
 vs. gasoline (C/H ↓)
- RON > 120: efficiency ↑ (optimized engine)
- No soot
- Low NOx (λ=1)
- Low fuel costs

- Fully compatible with CNG (no blend limit)
- Among all bio fuels: maximum land use efficiency and CO₂ reduction potential
- ~ 80 % WTW CO₂ reduction realistic
- Cost efficient bio fuel

- Fully compatible with CNG / bio methane (no blend limit)
- Land use efficiency significantly higher than bio fuels
- Simple and efficient PtX process
- 100% sustainable mobility possible with overall use of regenerative electricity

Opportunity:

Develop "methane/ CNG vehicle market" with affordable CNG and then gradually shift to renewable energy supply.

Prospects of CNG / e-methane as fuel

E-methane (PtG) future specification opportunities

		CNG (F EN 167	-	Opportunity E-Methane		
Parameter	Unit	Min	Max	Min	Max	Effect
Methane Number (MN)	- (MWM method)	65	-	98	ı	Describes knock resistance of the fuel. Important for max. compression ratio, boosting capability. E-methane: no dilution with C2+. → enhanced engine efficiency.
Lower Heating Value (LHV)	MJ/kg	not in fuel standard (often >44)	-	50	-	Fuel energy content. Important for mileage range and max. achievable power (determined by injector flow limitations). E-methane: no dilution with inert gases → enhanced mileage and specific power
Total Sulfur	mg/m³	-	30	-	0	Important for zero impact emissions. Sulfur is poison for the catalyst. No natural sulfur in e-methane. Sulfur free odorization enables sulfur free fuel. → reduced fuel demand for catalyst desulfurization → enhanced engine efficiency → reduced catalysts loading (vehicle cost ↓)
Hydrogen	% m/m	-	2	-	2	Important for steel tank safety (acc. to ECE 110)
Compressor Oil	mg/kg	tbd.	tbd.	tbd.	tbd.	Important for injection system functionality. Method tbd.

E-methane opportunity: Better fuel quality than conventional NG with dedicated E-Methane fuel standard. → Enabler for increased efficiency and performance vs. CNG.