# Methane as Fuel: Opportunities and Challenges Methan als Kraftstoff: Chancen und Herausforderungen

**Dr. Ulrich Kramer**Technical Specialist Fuels

Ford-Werke GmbH R&A Powertrain Europe



Runder Tisch Gasmobilität, Düsseldorf, 25. April 2018



- Challenges of future mobility
- Prospects of CNG / e-methane as fuel
- State of the art: methane engine technology
- Opportunities of dedicated e-methane engines
- H2020 project landscape CNG / methane
- Summary & Conclusions



### CO2 emission reductions in recent decades (NEDC\*)





Assessment of CO<sub>2</sub> reduction potential with gasoline, diesel technology (NEDC\*)



- TtW CO<sub>2</sub> targets:
  - 2020: 95 g/km
  - 2030: -30% (~67 g/km)
     under discussion
- WLTP\*\* exposes an even bigger challenge on CO<sub>2</sub>!
- Customer demand for larger cars or SUVs intensify CO<sub>2</sub> challenge!
- Further TtW CO<sub>2</sub> reduction only possible via PHEV, EV, FCEV\*\*\* (technological, economical limits)
- WtW approach seems meaningful
- So far, no WtW approach in European CO<sub>2</sub> regulation!

\*\*\*EV: Electric Vehicle

HEV: Hybrid EV PHEV: Plug-in HEV FCEV: Fuel Cell EV

MHEV: Mild HEV FHEV: Full HEV

\*\* WLTP: Worldwide harmonized Light vehicles Test Procedure



CO<sub>2</sub> NEDC [g/km]

Typical C-Car: 1360kg, 1.3 kWh for NEDC



### **Battery Electric vehicles and fuel cell vehicles**

#### **Re-Fueling Time**

<u>Diesel/Gasoline Vehicle</u> Refueling Time <10 sec / 100km

Battery Electric Vehicle
Recharging Time
~6 hours / 100km to

Battery Electric Vehicle
Recharging Time (future)
~3 min / 100km to

~1 min / 100km

~7 min / 100km

Fuel Cell Electric Vehicle
Refueling Time
~30 sec / 100km

Bio- / PtG-Methane / CNGV Refueling Time ~30 sec / 100km



35 l/min filling station ~20.5 MW charging power



2,3 kW (household) 50 kW - 120 kW (fast charging)

Up to 350 kW planned (German consortium) with up to 1 MW under study (being implemented in China)

3-5 min for 4-7kg H<sub>2</sub> 880 bar filling station, H<sub>2</sub> preconditioned to -40°C ~3 MW charging power

T

2-3 min for 20kg CH<sub>4</sub>
≤ 300 bar filling station
(30 – 40 kW compressor: parallel refueling of 2 vehicles possible)
~6.5 MW charging power

#### **Infrastructure**

Fully developed

> 14,000 pumps

Today: increasing

Future: under investigation

#### Insignificant

- << 100 pumps
- ~ no pipelines

#### Basis available

- > 900 pumps
- ~ 400k km pipelines
- ~ 100k NG vehicles fully compatible

- BEV / PHEV / FCV\* → limited customer acceptance today:
- BEV: extended re-charging time and limited range
- BEV: incomplete re-charging infrastructure
- FCV: nearly no H<sub>2</sub> infrastructure
- BEV / PHEV / FCEV\*: vehicle costs
- BEV / PHEV\* are currently introduced into the market and definitely will play a significant role in the future, but cannot fulfill all customer demands today
- FCEV\* under consideration
- Supplementary low CO<sub>2</sub>
   technologies required (long
   distance, low cost, fast market
   penetration)

CNGV: Compressed Natural Gas Vehicle

PtG: Power-to-Gas

\*EV: Electric Vehicle
BEV: Battery EV
HEV: Hybrid EV
PHEV: Plug-in HEV

FCEV: Fuel Cell EV



## Lower C/H ratio of alternative fuels enables significant TtW CO<sub>2</sub> reduction



WtW Option: Complete defossilisation with e-fuels (PtX) out of renewable electricity (wind / solar)

PtX: Power-to-X(= any fuel)

**Further Challenge: Zero Impact Emissions!** 

For comparison: marathon runner (75 kg man, 4:15 finisher)  $\sim 20 \text{ g CO}_2/\text{km}$  (Additional to basic metabolic rate)

**MEMO** 

EV: Electric Vehicle
HEV: Hybrid EV
MHEV: Mild HEV
FHEV: Full HEV



CO<sub>2</sub> NEDC [g/km]



- Challenges of future mobility
- Prospects of CNG / e-methane as fuel
- State of the art: methane engine technology
- Opportunities of dedicated e-methane engines
- H2020 project landscape CNG / methane
- Summary & Conclusions



# Prospects of CNG / e-methane as fuel

#### Advantages - NG / methane combustion

- More favorable C/H ratio than gasoline
  - → ~25 % CO<sub>2</sub> "Tank-to-Wheel" benefit (at same engine efficiency)
- Low feedgas emissions: in particular no soot

- Very knock resistant → ideal fuel for boosting and downsizing (RON > 120)
  - High compression ratio (CR) enabler
    - → efficiency improvement
    - $\rightarrow$  further CO<sub>2</sub> reduction
  - High boost pressure enabler → downsizing enabler
    - → efficiency improvement by use of smaller engine architecture



# Prospects of CNG / e-methane as fuel



Picture: erdgas mobil / Danny Kurz Photography

- Fossil CNG: 25 %
   TTW CO<sub>2</sub> reduction
   vs. gasoline (C/H ↓)
- RON > 120: efficiency ↑ (optimized engine)
- No soot
- Low NOx ( $\lambda$ =1)
- Low fuel costs



- Fully compatible with CNG (no blend limit)
- Among all bio fuels: maximum land use efficiency and CO<sub>2</sub> reduction potential
- ~ 80 % WTW CO<sub>2</sub> reduction realistic
- Cost efficient bio fuel



- Fully compatible with CNG / bio methane (no blend limit)
- Land use efficiency significantly higher than bio fuels
- Simple and efficient PtX process
- 100% sustainable mobility possible with overall use of regenerative electricity

#### **Opportunity:**

Develop "methane/ CNG vehicle market" with affordable CNG and then gradually shift to renewable energy supply.



# Prospects of CNG / e-methane as fuel

# E-methane (PtG) future specification opportunities

|                              |                      | CNG (H-Gas)<br>EN 16723-2              |      | Opportunity E-Methane |      |                                                                                                                                                                                                                                                                                            |
|------------------------------|----------------------|----------------------------------------|------|-----------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parameter                    | Unit                 | Min                                    | Max  | Min                   | Max  | Effect                                                                                                                                                                                                                                                                                     |
| Methane<br>Number (MN)       | -<br>(MWM<br>method) | 65                                     | -    | 98                    | 1    | Describes knock resistance of the fuel. Important for max. compression ratio, boosting capability. <b>E-methane: no dilution with C2+.</b> → <b>enhanced engine efficiency.</b>                                                                                                            |
| Lower Heating<br>Value (LHV) | MJ/kg                | not in fuel<br>standard<br>(often >44) | -    | 50                    | ı    | Fuel energy content. Important for mileage range and max. achievable power (determined by injector flow limitations). E-methane: no dilution with inert gases → enhanced mileage and specific power                                                                                        |
| Total Sulfur                 | mg/m³                | -                                      | 30   | -                     | 0    | Important for zero impact emissions. Sulfur is poison for the catalyst. No natural sulfur in e-methane.  Sulfur free odorization enables sulfur free fuel.  → reduced fuel demand for catalyst desulfurization  → enhanced engine efficiency  → reduced catalysts loading (vehicle cost ↓) |
| Hydrogen                     | % m/m                | -                                      | 2    | -                     | 2    | Important for steel tank safety (acc. to ECE 110)                                                                                                                                                                                                                                          |
| Compressor Oil               | mg/kg                | tbd.                                   | tbd. | tbd.                  | tbd. | Important for injection system functionality. Method tbd.                                                                                                                                                                                                                                  |

<u>E-methane opportunity:</u> Better fuel quality than conventional NG with dedicated E-Methane fuel standard.  $\rightarrow$  Enabler for increased efficiency and performance vs. CNG.



- Challenges of future mobility
- Prospects of CNG / e-methane as fuel
- State of the art: methane engine technology
- Opportunities of dedicated e-methane engines
- H2020 project landscape CNG / methane
- Summary & Conclusions



# State of the art: methane engine technology

## 2014 EU CNG vehicle market: CNG port fuel injection (PFI)



→ torque penalty vs. gasoline DI:
 CNG displaces air → vol. effy. ↓

- Dedicated CNG DI engine: compensation of volumetric efficiency losses
- Enhanced downsizing by exploitation of high knock resistance of CH<sub>4</sub>
  - $\Rightarrow$  Increased efficiency of CNG engines  $\rightarrow$  less CO<sub>2</sub>
- CNG specific torque: ~15% below comparable gasoline DI
- CNG specific power: ~ 20% below comparable gasoline DI



- Challenges of future mobility
- Prospects of CNG / e-methane as fuel
- State of the art: methane engine technology
- Opportunities of dedicated e-methane engines
- H2020 project landscape CNG / methane
- Summary & Conclusions



# Opportunities of dedicated e-methane engines

## **CNG / Methane Downsizing Enablers**

CNG direct injection



 CNG optimized engine architecture



The higher the knock resistance of the fuel, the higher the downsizing capability (e-methane opportunity)

Advanced boosting systems





# Opportunities of dedicated e-methane engines

Effect on Vehicle Performance Attributes - Transient Response Walk Simulation Results: Acceleration 60-100km/h in 5<sup>th</sup> gear



 Dedicated CNG DI with optimized engine architecture, with additionally optimized boosting system, and operated with highly knock resistant fuel elevates performance level significantly



- Challenges of future mobility
- Prospects of CNG / e-methane as fuel
- State of the art: methane engine technology
- Opportunities of dedicated e-methane engines
- H2020 project landscape CNG / methane
- Summary & Conclusions



# H2020 - project landscape CNG / methan

## GasOn – Gas-Only Internal Combustion Engines (WP3)



H2020 GV-3-2014 Future natural gas powertrains and components for cars and vans (Project number 652816)





- Ford Grand C-MAX (7 Seat Van)
- Dedicated "Gas Only" powertrain, engine optimized for CNG / methane operation
- 600 km mileage
- 20% CO<sub>2</sub> reduction vs. "Best-in-Class"
   CNG Vehicle 2014 (CO<sub>2</sub> eq. < 100 g/km)</li>
- 110 kW, 240 Nm
- EU6+ emission level



# **H2020 - project landscape CNG / methane**

# GasOn – Gas-Only Internal Combustion Engines (WP3)



#### **GasOn Technologies**







#### **Downsizing:**

1.0l 3 Cylinder dedicated NG Engine



**CNG Direct Injection System** (CNG DI)









# **H2020 - project landscape CNG / methane**

#### **Thomson**

Mild Hybrid cost effective solutions for a fast market penetration.

Low Carbon Fuel: CNG

**48V Mild Hybrid Powertrain (mHEV)** 

Thomson

Affordable, dedicated CNG Hybrid Electric Vehicle (HEV) (basis 1.0 CNG-DI)



## **Major Objectives:**

- Driveability as with 1.5l 4-cyl. gasoline engine (110kW)
- CO2 ≤ 1.5TDCi Diesel 88kW
- Projected costs: below 1.5 TDCi Diesel 88kW (EU7).



# **H2020 - project landscape CNG / methane**

Outlook: MethQuest – MethCar



**Application for** 07/2018- 06/2021

Erzeugung und Einsatz von Methan aus erneuerbaren Quellen in mobilen und stationären Anwendungen

- New dedicated methane engine
- Lower complexity
- Better efficiency
- Production capability of methane DI system
- Determination of S, H2, Compressor Oil Limits

Verbund 1
MethFuel

Innovative Methanerzeugung auf Basis erneuerbarer Quellen Verbund 2 MethCar Methanmotoren für PKW

MethPower

Effiziente und saubere Nutzung von erneuerbaren, methanbasierten
Kraftstoffen zur
Stromerzeugung

Verbund 3

Verbund 4
MethMare
Effiziente und
saubere Nutzung
von erneuerbaren,
methanbasierten
Kraftstoffen in maritimen Anwendungen

Verbund 5 MethGrid

Sektorenkopplung in einem Microgrid am Beispiel des Binnenhafens Karlsruhe

Verbund 6 MethSys

Systemanalytische Untersuchungen zur Evaluierung der Rolle von EE-Methan



- Challenges of future mobility
- Prospects of CNG / e-methane as fuel
- State of the art: methane engine technology
- Opportunities of dedicated e-methane engines
- H2020 project landscape CNG / methane
- Summary & Conclusions



# **Summary & Conclusions**

Challenge for automotive transportation is GHG (CO<sub>2</sub>)

\*EV: Electric Vehicle

BEV: Battery EV

HEV: Hybrid EV

PHEV: Plug-in HEV

FCEV: Fuel Cell EV

MEMO

- TTW CO<sub>2</sub> reduction potential with fossil gasoline / diesel is limited
- Elimination of TTW CO<sub>2</sub> possible with electrification (BEV, PHEV)\* or carbon free fuel (H<sub>2</sub>, FCEV\*)
- BEV / PHEV / FCEV\* → limited customer acceptance (re-charging time, infrastructure, costs)
- Low carbon fuels, as e.g. methane, enable significant step down in TTW CO<sub>2</sub> emissions
- WTW basis:  $CO_2$  neutral mobility also possible when vehicle  $CO_2$  emissions are "recycled" into sustainable fuels ( $\rightarrow$  PtX fuels as e.g. e-methane)  $\rightarrow$  opportunity of fast market introduction
- CNG mobility is an introduction scenario for sustainable mobility via e-methane + bio methane
- Maximum efficiency achievable with dedicated, "genuine" methane engines
- Further efficiency potential by standardized high quality e-methane (high MN, LHV; low sulfur)
- A "Methane-HEV\*" is an interesting concept in particular with regard to CO<sub>2</sub> avoidance costs
- The EU actively supports NG / methane mobility projects
- Ford R&A is actively involved in several NG / e-methane EU research activities
   (Horizon 2020: GasOn, Thomson, MethQuest)

