

June 29-30, 2016 - July 1, 2016 Politecnico di Torino - Torino - ITALY

Conference

CNG 2.0

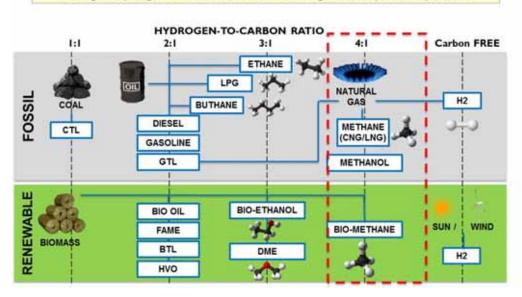
Massimo Ferrera FCA EMEA Powertrain Engineering R&T (CRF)

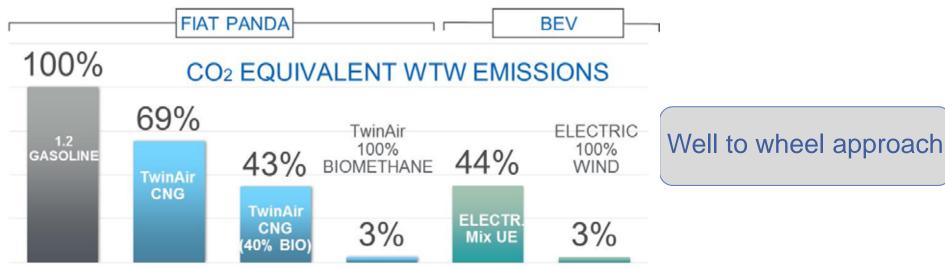
Natural Gas is a key fuel source for sustainable mobility

CNG represents the most efficient, <u>affordable and</u> <u>immediately available</u> choice for resolving pollution problems in urban areas and reducing CO2 emissions

From '90s, FCA continues to invest time and resources in developing the **CNG technology** leading the European market with a large portfolio of **vehicles** and **engines**

CNG sustainability





The highest hydrogen-to-carbon ratio, the lowest CO2 / C-based pollutants produced

Oil independence & decarbonisation

CNG affordability

The lowest cost of ownership & the right driving range

Continuous growth of refueling stations and vehicle demand

FCA – Natural Gas experience

19-years consolidated experience (700.000 units sold, >50% market share)

FCA CNG line-up 0.9 TWINAIR TURBO 80 hp CO₂ = 95/105 g/km 500L Living 0.9 TWINAIR TURBO 80 hp CO₂ = 95/106 g/km PANDA 0.9 TWINAIR TURBO 80 hp PUNTO 1,4 FIRE DOBLÒ 1.4 FIRE 70 hp 1.4 T-JET 120 hp 70 hp $CO_2 = 85 \text{ g/km}$ CO₂ = 115 g/km CO2 = 119 g/km CO₂ = 134 g/km YPSILON 0.9 TWINAIR TURBO 80 hp COs = 86 g/km

DOBLÓ CARGO 1.4 T-JET 120 hp

CO2 = 134 g/km

PANDA VAN 0,9 TWINAIR TURBO 80 hp

CO2 = 85 g/km

FIORINO 1.4 FIRE 70 hp CO₂ = 119 g/km PROFESSIONAL

DUCATO 3.9 TURBO 136 hp

CO₂ = 234 g/km

BUCATO PANORAMA 3.6 TURBO 136 hp

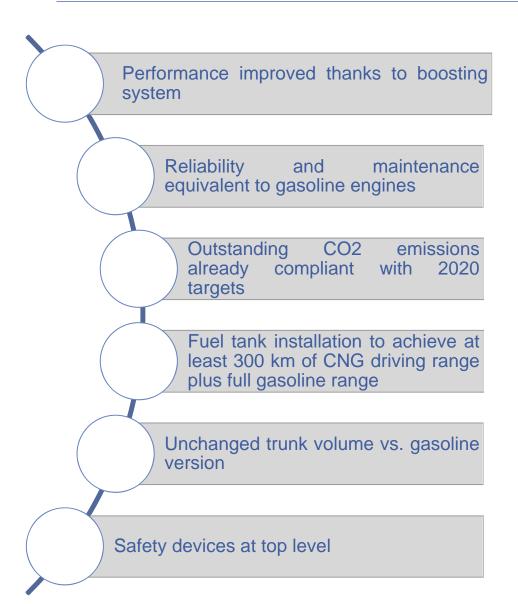
COs = 234 g/km

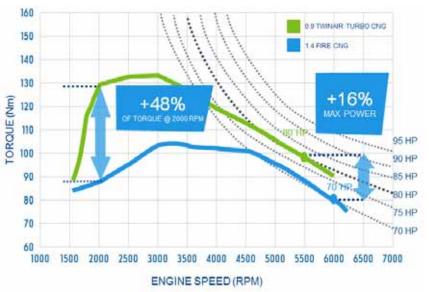
Full Natural Gas engine porfolio

Current CNG 1.0 technology

Powertrain

- □ Combustion → Otto cycle
- □ A/F ratio → stoichiometric operation in all conditions
- ☐ Ignition → positive with spark plug/coil
- ☐ Injection → port fuel multipoint sequentially phased
- Boosting → turbocharger with WG
- ☐ Tailored materials → seat valves/valves
- ☐ Control → tailored strategies
- ☐ After treatment → tailored 3-way catalyst


Fuel system

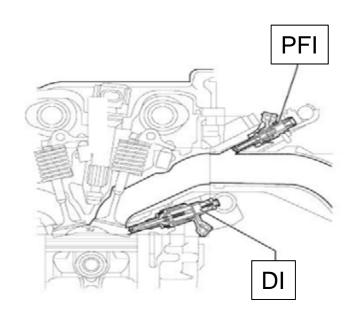

- ☐ Storage → steel tank @ 200 bar & safety devices
- ☐ Feeding → return less with pressure reducer
- □ Bifuel → gasoline as emergency mode

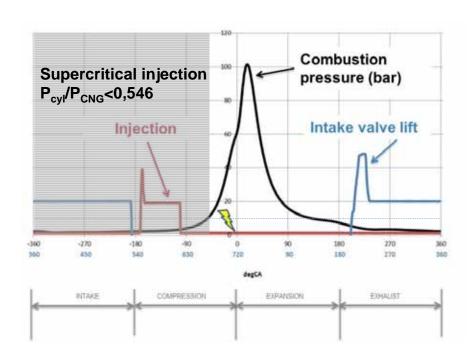
Benefits of current CNG technology

CNG 2.0 powertrain technology

Current CNG technology is mature

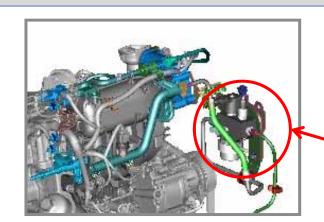
but

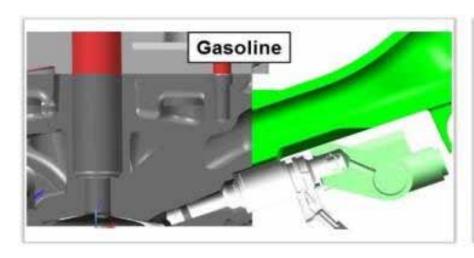

our goal is to develop a smart & affordable technology exploiting all CNG benefits without drawbacks:

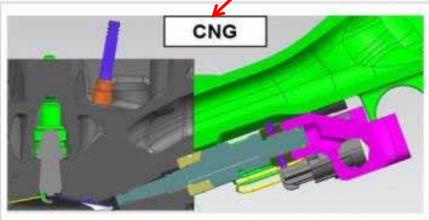

- remove performance gap → gasoline-like target
- avoid installation impact > GDI (gasoline direct injection) compatible
- () improve engine efficiency → post 2020 CO2 challenge

CNG DI (Direct Injection) concept

Low pressure injection after intake valve closing (DI) to remove volumetric efficiency losses due to gaseous injection (PFI)

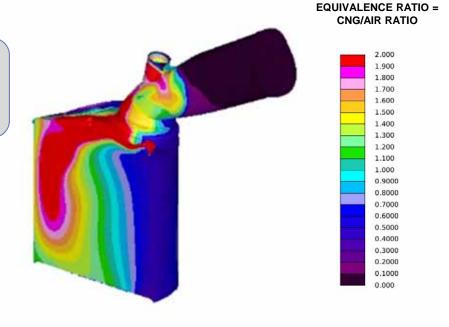

CNG DI: compatible with GDI engine

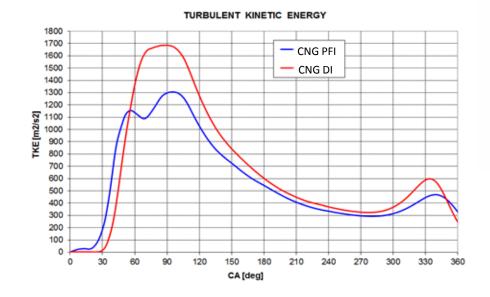

Easy adaptation of CNG DI system into GDI engine


Cylinder Head & Block: >No modifications

Injection system CNG:

> DI CNG injectors, fuel rail and electronic pressure regulator

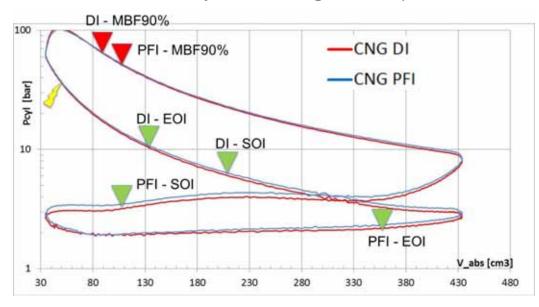

CNG DI improves engine efficiency (1/2)

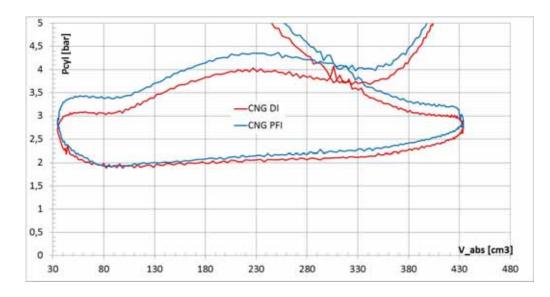


1.4L 4cyl. 16v TC engine – 5000rpm full load

The side injection of CNG enables a good air/gas mixing close to spark plug before ignition......

.....and influences tumble motion enhancing combustion speed


CNG DI improves engine efficiency (2/2)



1.4L 4cyl. 16v TC engine 5000rpm full load

Faster combustion leads to an exhaust gas temperature & pressure reduction

- ☐ The lower exhaust gas temp./press. reduces pumping work
- ☐ The lower pumping work enhances fuel efficiency & reduces CO2 emissions

CNG DI: EU large collaborative project

Gas-Only Internal Combustion Engines

Contract number: 652816 - 1st of May 2015 / 31st of October 2018

Topic: H2020 GV-3-2014 Future natural gas powertrains and components for cars and vans

http://www.gason.eu/

GasOn project: objectives

In order to exploit the main benefits of CNG-powered engines, the aim is to develop CNG-only (monofuel) engines able to comply with:

- post Euro 6 noxious emissions
- 2020+ CO2 emissions targets
- new homologation cycle and real driving conditions

with simultaneous improvement of engine efficiency & performance, adopting:

- nnovative injection, ignition and boosting system concepts
- advanced exhaust gas aftertreatment system
- detecting gas-quality and composition

GasOn project: objectives towards CNG 2.0

GHG Reduction Technology	Enabling Technology	Estimated GHG Reduction Range on NEDC cycle		
		WP2 (CRF)	WP3 (Ford)	WP4 (RSA)
Downsizing and Extennal EGR benefit	Advanced Boosting	6 8%	1012 %	5 8%
	CNG Direct Injection (CNG DI)			
Compression Ratio Increase	High Peak Pressure Capable Engine Architecture	3 4%	1 3%	3 4 %
	Variable compression ratio (VCR)	na		na
Dethrottling and/or advanced air management	Advanced Variable Valve Actuation	36%	2 3%	4 5%
	Charge Dilution	na		
CNG system weight reduction with downspeeding and further vehicle measures	Light Weight CNG Tank System	3 4%	5 7%	4 6 %
	Downspeeding with longer final drive to trade performance (gained by weight reduction) against fuel economy			
	Vehicle frictions/aerodynamics	na	na	
TOTAL (Reference: 2	014 Best in class CNG vehicles)	16 22 %	18 25 %	16 22 %

CNG 2.0 means tailored technologies (engine, fuel system and storage) all together to achieve outstanding target:
-20% CO₂ vs. current CNG solutions.

MAKING THE WORLD'S ROADS GREENER

THANK YOU FOR YOUR ATTENTION

